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Abstract

Data clustering aims to group the data samples into clusters, and has attracted

many researchers in a variety of multidisciplinary fields, such as machine learning

and data mining. In order to capture the geometry structure, many methods

perform clustering according to a predefined affinity graph. So the clustering

performance is largely determined by the graph quality. Unfortunately, the

graph quality cannot be guaranteed in various real-world applications. In this

paper, an Adaptive Projected Matrix Factorization (APMF) method is proposed

for data clustering. Our contributions are threefold: (1) instead of keeping the

graph fixed, graph learning is taken as a part of the clustering procedure; (2) the

clustering is performed in the projected subspace, so the noise in the input data

space is alleviated; (3) an efficient and effective algorithm is developed to solve

the proposed problem, and its convergence is proved. Extend experiments on

nine real-world benchmarks validate the effectiveness of the proposed method,

and verify its superiority against the state-of-the-art competitors.
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1. Introduction

Clustering is a fundamentally important task in the field of machine learn-

ing, and involves various practical applications, such as image classification [1],

saliency detection [2] and signal processing [3]. Given the desired cluster num-

ber, the objective of clustering is to partition the data into different clusters,5

such that the samples within the same cluster have high similarity. In the past

decades, a great number of techniques have proposed on clustering, such as k-

means clustering [4], hierarchical clustering [5], multiview clustering [6, 7, 8, 9],

spectral clustering [10], non-negative matrix factorization [11], support vector

clustering [12] and maximum margin clustering [13].10

One of the most popular clustering method is non-negative matrix factor-

ization (NMF). NMF approximates the data matrix with the product of two

non-negative matrices, which can be considered to be the clustering centroid

and indicator matrix respectively. And the clustering result is indicated by

the index of the maximal element within each indicator vector. Since the non-15

negative constraints allow only additive operation (no subtractive and combi-

nation), the factorization leads to a part-based representation, which implies

the perception mechanism of human brain [14]. So NMF is suitable to learn

the parts of objects, and has shown good performance in image annotation [15],

face recognition [16], crowd analysis [17, 18, 19] and document clustering [20].20

Though NMF achieved prominent performance, it suffers from some prob-

lems. The main drawback of NMF is that it neglects the local correlation of

data points, so it fails to perceive the data manifold. To tackle this problem,

some graph-based NMF methods [21, 22, 16, 23, 14, 24, 25] have been proposed.

By assuming that the points with close distances should be grouped into the25

same cluster, these approaches first construct a weighted affinity graph based

on the data points’ distances, and then perform matrix factorization according

to the spectrum of the graph. So their performance highly depends on the qual-

ity of the affinity graph. However, in practical applications, the graph quality

cannot be guaranteed because: (1) the points’ distances in the input data space30
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may be influenced by the noise; (2) the construction approach (0-1 weighting,

Gaussian weighting) may be inappropriate. So the clustering performance tends

to be adversely affected by the graph quality, and it’s necessary to optimize the

affinity graph in the clustering procedure.

Another major limitation of the existing NMF-based methods is that the35

factorization is accomplished in the input data space. According to Li et al. [26],

data with high dimensionality is always lying within a low dimensional manifold.

And in the desired low dimensional subspace, the noise within the original data

is alleviated and more discriminative features are preserved. However, most

existing methods process the input data directly. So they cannot capture the40

intrinsic data geometry accurately, and are sensitive to the data noise. In recent

years, the success of subspace clustering methods [27, 28, 29, 30, 31] has proved

that the exploration of subspace improves the robustness. However, most matrix

factorization methods neglect this aspect.

To mitigate the above issues, we propose an Adaptive Projected Matrix45

Factorization (APMF) method in this paper, which inherits the merits of both

spectral clustering and NMF. The data points are projected into a low dimen-

sional subspace, so the noise in the input space is alleviated and more valuable

features are captured. And the data graph is updated during the clustering

procedure, so the graph quality is improved. In addition, the proposed method50

learns the indicator matrix directly without post-processing, so it achieves stable

performance.

The main contributions of this paper are summarized as follows.

(1) The graph learning is jointly incorporated in the NMF framework. By

optimizing the data graph adaptively during the matrix factorization pro-55

cedure, the geometric structure is explored and the graph quality is im-

proved.

(2) The data is projected to a low dimensional subspace, which preserves more

discriminative features and contains less noise. Both the graph learning

and clustering are accomplished in the projected subspace, so the data60
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noise in the input space is avoided.

(3) The proposed problem is solved with an efficient alternative algorithm, and

no post-processing is involved. Experimental results demonstrate that the

proposed method is effective and outperforms the representative competi-

tors.65

The rest of this paper is organized as follows. Section 2 reviews the related

works on non-negative matrix factorization. Section 3 proposes the Adaptive

Projective Matrix Factorization method, and introduces an efficient optimiza-

tion algorithm. Experimental results are presented and theoretically discussed

in Section 4. Finally Section 5 summarizes the conclusion.70

2. Related Work

In this section, we briefly review the original non-negative matrix factor-

ization (NMF) and its graph-based variants, and discuss their advantages and

limitations.

2.1. Non-negative matrix factorization75

Given a data matrix X = [x1, x2, ..xn] ∈ Rd×n (d is the dimensionality and n

is the number of samples), NMF aims to approximate X with two non-negative

matrices :

X ≈ FGT , (1)

where F ∈ Rd×k and G ∈ Rn×k are the clustering centroid and cluster indicator

respectively, and k is the desired cluster number. So the objective function of

NMF is defined as a closed form problem:

min
F≥0,G≥0

||X − FGT ||2F , (2)

where ||·||F is the Frobenius norm. Benefited from the non-negative constraints,

NMF obtains a part-based representation. This property provides a physiolog-

ical and psychological interpretation for non-negative data [21], such as face
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images and documents. However, from Eq. (2) we can see that NMF just focus

on the global data geometry, and ignore the local aspect. So some graph-based80

variants are proposed.

2.2. Graph-based variants of NMF

The investigation of data relationship is essential to handle the data with

complicated structures. To this end, Cai et al. [21] proposed to impose the

graph regularization term on NMF by solving the following problem:

min
F≥0,G≥0

||X − FGT ||2F + λtr(GTLG), (3)

where tr() is the trace operator, L = D − ST +S
2 is the Laplacian matrix, S

is the affinity graph, and D is a diagonal matrix with Dii =
∑
j
Sij+Sji

2 . The

second term enforces that the samples with small distance should have similar85

indicator vectors. Thus, the local relationship between the points is exploited

such that the clustering performance can be improved.

The residue error of each data point is squared in the objective function (3),

so problem (3) is sensitive to outliers. By introducing the `2,1 norm, Nie et

al. [22] proposed a more robust version:

min
G≥0,GTG=I

||X − FGT ||2,1 + λtr(GTLG), (4)

where I is the identity matrix. The `2,1 norm makes the objective function

robust to outliers, and the constraint GTG = I ensures the optimal solution to

be unique. However, the cluster result may be inaccurate if the affinity graph90

is constructed with low quality.

Instead of defining a simple graph, Zeng et al. [32] utilized the hyper graph

Lhyper, where each edge connects more than two data points. And the objective

function is denoted as

min
F≥0,G≥0

||X − FGT ||2F + λtr(GTLhyperG), (5)

There are also some other methods [16, 23, 14, 24, 25] that introduced manifold

regularization terms. However, the predefined graph may be with low quality,
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and affect the clustering performance adversely. Recently, Zhang et al. [33] pro-

posed to update the graph in the clustering phase, and validated the rationality95

of performing graph learning.

The shortcoming shared by all the above methods is that the clustering is

performed in the input data space, where the valuable features may be corrupted

by noise. So both the graph construction and matrix factorization tend to be

affected. Li et al. [26] proved that the influence of data noise can be reduced in100

the subspace. So it’s necessary to combine the subspace learning strategy into

matrix factorization methods.

3. Methodology

In this section, we introduce the proposed Adaptive Projected Matrix Fac-

torization (APMF), and design an efficient optimization algorithm. To capture105

the local data structure while improving the robustness, the proposed method

jointly incorporates graph learning and subspace clustering into the matrix fac-

torization framework.

3.1. Adaptive Projected Matrix Factorization Method

In this part, the Adptive Projected Matrix Factorization (APMF) method

is presented. To find the optimal graph for clustering, we propose to update the

graph when performing matrix factorization. So we have the following objective

function:

min
F,G,S

||X − FGT ||2,1 + λtr(GTLG)

+α
∑
i,j

S2
ij ||(xi − xj)||22,

s.t.
∑
j Sij = 1, Sij ≥ 0, GTG = I,G ≥ 0,

(6)

where α is a parameter. The third term enforces that the Sij should be large

if xi and xj are close to each other. So the affinity graph S can be updated

according to the points’ distances, and the local relationship within the data

manifold can be captured. However, the clustering is still accomplished in the

input data space. According to Chen et al. [26], more discriminative features
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can be captured if the points are transformed into the desired subspace. So

we project the data into subspace with a transformation matrix W ∈ Rd×m

(m� d). And the objective function is rewritten as

min
F,G,S,W

||WTX − FGT ||2,1 + λtr(GTLG)

+α
∑
i,j

S2
ij ||WT (xi − xj)||22,

s.t.
∑
j Sij = 1, Sij ≥ 0, GTG = I,G ≥ 0,WTW = I,

(7)

where the orthogonal constraint on W guarantees the uniqueness of W . In110

the optimization, we propose an alternative method to update each variable.

Thus, both the matrix factorization and the graph learning are achieved in the

learned subspace, and the merit of subspace clustering is inherited. Finally, we

can obtain the cluster indicator G in the desired subspace, and the noise within

the input space is avoided.115

3.2. Optimization algorithm

Problem (7) is not convex, so we propose to solve it with the Augmented

Lagrangian Multiplier (ALM) [34]. Because both the `2,1 norm and Laplacian

regularization depend on G, we introduce two auxiliary variables E = WTX −

FGT and Z = G. So problem (7) is rewritten as

min
E,Z,F,G,S,W,Λ1,Λ2,µ

||E||2,1 + λtr(ZTLG)

+α
∑
i,j

S2
ij ||WT (xi − xj)||22

s.t.E = WTX − FGT , Z = G,GTG = I,∑
j Sij = 1, Sij ≥ 0,WTW = I,

(8)

which is equivalent to the following ALM problem

min
E,Z,F,G,S,W,Λ1,Λ2,µ

||E||2,1 + λtr(ZTLG)

+α
∑
i,j

S2
ij ||WT (xi − xj)||22

+µ
2 ||E −W

TX + FGT + 1
µΛ1||2F

+µ
2 ||Z −G+ 1

µΛ2||2F ,

s.t.Z ≥ 0, GTG = I,
∑
j Sij = 1, Sij ≥ 0,WTW = I,

(9)
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where Λ1 ∈ Rm×n and Λ2 ∈ Rk×d are ALM multipliers, and µ is a scalar

parameter. Since problem (9) involves several variables to be optimized, we

propose to solve it with an alternative algorithm. Firstly, F and G are initialized

with the method in [22], and W and S are initialized with the strategy in [35].120

Then we update one variable while keeping the others fixed.

Update E: to update E, we fix all the other variables, and then problem (9)

becomes

min
E
||E||2,1 +

µ

2
||E −M ||2F , (10)

where M = WTX − FGT − 1
µΛ1. As proved in [36], the optimal solution of

problem (10) is

ei =

 (1− 1
µ||mi||2 )mi, if ||mi||2 ≥ 1

µ

0, else
, (11)

where ei and mi are the i-th column of E and M respectively.

Update Z: when solving Z, problem (9) is reduced to

min
Z≥0

λtr(ZTLG) +
µ

2
||Z −G+

1

µ
Λ2||2F . (12)

Spanning the Frobenius norm and removing the irrelevant terms, we have

min
Z≥0
||Z − P ||2F , (13)

where P = G − 1
µΛ2 − λ

µLG. It’s obvious that the optimal Z can be updated

as

Zij = max(Pij , 0). (14)

Update F: optimizing F yields the following problem

min
F
||F −HG||2F , (15)

where H = WTX−E− 1
µΛ1. Since there is no constraint on F , we can compute

the optimal solution as F = HG.

Update G: for updating G, problem (9) is transformed to the following

form:

min
GTG=I

λtr(ZTLG) +
µ

2
||E −WTX + FGT +

1

µ
Λ1||2F

+
µ

2
||Z −G+

1

µ
Λ2||2F ,

(16)
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which can be further simplified to

min
GTG=I

||G−K||2F , (17)

where K = (WTX − E − 1
µΛ1)TF + Z − λ

µLZ + 1
µΛ2. According to [22], the

optimal solution of the above problem is

G = UV T , (18)

where U ∈ Rk×d and V ∈ Rd×d are the left and right singular vectors of the125

compact SVD decomposition of G.

Update W: when updating W , we have

min
WTW=I

µ

2
||WTX −Q||2F + α

∑
i,j

s2
ij ||WT (xi − xj)||22, (19)

where Q = FGT + E + 1
µΛ1. Denoting a scatter matrix S̃ ∈ Rd×d as S̃ =∑

i,j

S2
ij(xi − xj)(xi − xj)T , then problem (20) becomes

min
WTW=I

tr(WT S̃W )− µ

α
tr(WTXQ), (20)

which can be solved with the Generalized Power Iteration method [37].

Update S: in order to optimize S, we transform the objective into the

following problem:

min
Sij=1,Sij≥0

λ

α

∑
i,j

Sij ||zi − gj ||22 +
∑
i,j

S2
ij ||WT (xi − xj)||22, (21)

where zi is the i-th column of Z, and gj is the j-th column of G. Problem (23)

is independent for different i, so we optimize the following problem separately

for each i:

min
Sij=1,Sij≥0

λ

α

∑
j

Sij ||zi − gj ||22 +
∑
j

S2
ij ||WT (xi − xj)||22. (22)

Denoting a diagonal matrix V ∈ Rn×n with Vjj = ||WT (xi−xj)||22 and defining

a column vector ui ∈ Rn×1 with its j-th element as λ
2α ||zi − gi||

2
2, the above

problem can be rewritten as

min
sTi 1=1,si≥0

1

2
sTi V si + sTi ui, (23)
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where si ∈ Rn×1 is a column vector with its j-th element as Sij , and 1 ∈ Rn×1

is a column vector with all its elements as 1. Problem (23) can be readily solved

with an efficient method [38].130

Update Λ1, Λ2 and µ: according to [34], the ALM parameters Λ1, Λ2 and

µ are updated as

Λ1 = Λ1 + µ(WTX − FGT − E),

Λ2 = Λ2 + µ(Z −G),

µ = ρµ,

(24)

where the parameter ρ is set as 1.5 in the experiments.

The details of the optimization algorithm are exhibited in Algorithm 1.

Algorithm 1 Optimization algorithm

Input: Data matrix X, cluster number c, projection dimension m, parameters

λ, α.

1: Initialize data graph S, matrices F and G, and transformation matrix W .

2: repeat

3: Update E with Eq. (11).

4: Update Z with Eq. (14)

5: Update F by solving problem (15).

6: Update G according to Eq. (18).

7: Update W by solving problem (20).

8: Update S by solving problem (23).

9: Update Λ1, Λ2 and µ according to Eq. (24).

10: until Converge

Output: The learned graph S.

4. Experiments

In this section, experiments are conducted on real-world datasets to demon-

strate the effectiveness of the proposed APMF. The clustering accuracy (ACC),135
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Table 1: Description of datasets.

Datasets Samples Dimensionality Classes

BA 1400 320 36

Jaffe 213 676 10

Yale 165 256 15

Dermatology 366 34 6

Ecoli 336 7 8

Ionosphere 351 34 2

Movement 360 90 15

Semeion 1593 256 10

Table 2: ACC of different methods on eight real-world datasets. The best results are in bold

face.

Datasets k-means RCut NCut NMF GNMF RMNMF AMF APMF

BA 0.41 0.15 0.42 0.17 0.20 0.40 0.44 0.46

Jaffe 0.75 0.77 0.80 0.67 0.47 0.80 0.77 0.92

Yale 0.43 0.24 0.51 0.35 0.32 0.38 0.48 0.57

Dermatology 0.71 0.65 0.92 0.73 0.61 0.72 0.95 0.96

Ecoli 0.64 0.63 0.52 0.35 0.44 0.70 0.67 0.76

Ionoshpere 0.70 0.52 0.69 0.63 0.64 0.72 0.71 0.83

Movement 0.44 0.40 0.46 0.37 0.26 0.39 0.49 0.49

Semeion 0.57 0.25 0.52 0.37 0.36 0.44 0.67 0.68

normalized mutual information (NMI) [22] and Purity [19] are taken as evalua-

tion measurements.

Datasets: Eight real world benchmark datasets are employed, including

one handwritten digit dataset, i.e., Binary Alphabet (BA) [39], two face im-

age dataset, i.e., Jaffe [40] and Yale [41], and five datasets from UCI Machine140

Learning Repository [42], i.e., Dermatology, Ecoli, Ionosphere, Movement and

Semeion. The details of the datasets are exhibited in Table 1.

Competitors: In the experiments, the proposed APMF is compared with

six state-of-the-arts, including k-means, Ratio Cut (RCut) [43] Normalized Cut

(NCut) [44], NMF [11], Graph-regularized NMF (GNMF) [21] and Robust Man-145

ifold NMF (RMNMF) [22]. For k-means, RCut, NCut and RMNMF, the self-
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Table 3: NMI of different methods on eight real-world datasets. The best results are in bold

face.

Datasets k-means RCut NCut NMF GNMF RMNMF AMF APMF

BA 0.57 0.24 0.57 0.29 0.35 0.52 0.58 0.59

Jaffe 0.82 0.81 0.85 0.69 0.52 0.77 0.78 0.90

Yale 0.52 0.30 0.56 0.42 0.38 0.47 0.55 0.61

Dermatology 0.81 0.68 0.88 0.64 0.50 0.85 0.90 0.91

Ecoli 0.58 0.56 0.48 0.21 0.57 0.51 0.58 0.62

Ionoshpere 0.12 0.12 0.20 0.15 0.16 0.13 0.23 0.29

Movement 0.56 0.51 0.60 0.40 0.27 0.49 0.59 0.62

Semeion 0.52 0.22 0.48 0.32 0.34 0.34 0.58 0.59

Table 4: Purity of different methods on eight real-world datasets. The best results are in bold

face.

Datasets k-means RCut NCut NMF GNMF RMNMF AMF APMF

BA 0.44 0.18 0.45 0.17 0.37 0.46 0.46 0.48

Jaffe 0.77 0.80 0.84 0.69 0.48 0.80 0.78 0.92

Yale 0.45 0.27 0.52 0.35 0.28 0.39 0.50 0.58

Dermatology 0.8 0.72 0.93 0.75 0.61 0.73 0.94 0.96

Ecoli 0.81 0.84 0.79 0.51 0.54 0.80 0.83 0.86

Ionoshpere 0.70 0.64 0.72 0.64 0.64 0.72 0.71 0.83

Movement 0.47 0.43 0.49 0.38 0.26 0.42 0.50 0.50

Semeion 0.60 0.31 0.56 0.39 0.40 0.46 0.67 0.69

tune Gaussian method [45] is used to construct the graph. For GNMF, the 0-1

weighting graph is used since it’s more suitable [21]. Because k-means, RCut

and NCut are sensitive to initialization, we perform them for 200 repetitions

and report the average performance. In order to evaluate whether the data pro-150

jection is effective, we further denote the method with objective (6) as Adaptive

Matrix Factorization (AMF), and compare it with the proposed APMF. For a

fair comparison, all the competitors utilize their optimal parameters. And for

our APMF, the parameters λ and α are all set as 0.01, and the projection di-

mensionality m is determined empirically according to the data dimensionality155

d (m� d).
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Sample 1

Sample 2

Sample 5

Sample 4

Sample 3

Figure 1: Features captured by the transformation matrix W . From to right, the selected

feature number is {32, 64, 96, 128, 160, 192, 224, 256}. Most discriminative features, such as

eyes, nose and mouth, are preserved.

Performance: Table 2, 3 and 4 exhibits the clustering results of different

methods. It can be seen that APMF has the highest ACC, NMI and Purity on

all datasets, which implies the best performance. In particular, APMF outper-

forms the competitors a lot on Jaffe and Ionosphere. k-means and NMF fails in160

most cases, since they can not perceive the local data structure. RCut, NCut,

GNMF and RMNMF show better performance because they exploit the mani-

fold structure. However, they are limited to learn the optimal affinity graph for

clustering, and easily affected by the noise in the input data space. Moveover,

k-means, RCut and NCut are sensitive to the initialization. AMF shows good165

performance on some datasets because it learns the data graph adaptively. But

it fails to find the low dimensional subspace, so it’s easily affected by data noise.

The comparison between AMF and APMF demonstrates that the learning of

subspace does improve the clustering performance. The proposed APMF takes

graph learning as a part of the clustering stage, and learns the local data struc-170

ture in the desired subspace. So it achieves the best results.

In addition, we evaluate whether the projected subspace preserves discrimi-

nant features. We randomly select five samples from the Yale dataset. With the
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Figure 2: Convergence curves on different datasets.

learned optimal transformation matrix W , the larger value of ||Wi,:||2 indicates

that the i-th feature is more valuable [35]. So we select the most important175

{32, 64, 96, ..., 256} features by sorting ||Wi,:||2, and show the selected features

in Figure 1. Each pixel is a feature, the selected ones maintain their original

pixel value, and the unselected ones are shown in white. From left to right, the

feature number is {32, 64, 96, ..., 256} respectively. And we can see in Figure 1

that the transformation matrix W captures the most discriminative features,180

such as eyes, mouth and nose. And the skin pixels, which can be considered

as the background noise, are dropped in most cases. So the data projection

operation helps to capture the valuable features while reducing the influence of

noise.

Convergence: We further discuss the convergence behavior of APMF. Dur-185

ing the optimization of each parameter, a global or local optimal solution is ob-

tained. So the ALM objective value in problem (9) decreases monotonously in

each iteration, and finally converges to a local optima. In addition, as µ grows

exponentially with the number of iterations, the third and fourth terms in the

ALM objective function will be close to 0. So problem (9) converges to the190
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Figure 3: The influence of λ and α on (a) Yale and (b) Ecoli datasets.

original objective function in problem (7) asymptotically. Therefore, the con-

vergence of problem (7) is guaranteed. Fig. 2 visualizes the convergence curves

of the original objective value on different datasets. As shown in the figure,

the optimization algorithm converges within ten iterations, which verifies the

effectiveness of the optimization.195

Parameter sensitivity: There are two regularization parameters, λ and

α, in the proposed method. λ controls the weight of the manifold learning term,

and α balances the graph learning term. We investigate their impacts on the

final clustering performance. Figure 3 shows the ACC curves of APMF with

varying λ and α respectively. It can be seen that the performance of APMF is200

very stable when λ and α are within the range of {0.0001, 0.001, ..., 0.1}. When

the values of λ and α are larger than 1, the approximate error in problem (7)

becomes large, so the performance decreases. Thus, we set λ and α as 0.01

throughout the experiments.
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5. Conclusions205

In this paper, a new clustering method called Adaptive Projected Matrix

Factorization (APMF) has been put forward. The proposed method jointly

combines the graph learning method into the NMF framework, so it is able

to learn the optimal affinity graph for clustering. In addition, the proposed

method takes advantage of subspace clustering by projecting the input data210

into the desired subspace, so the noise in the input data space is alleviated and

more discriminative features are captured. Moreover, an efficient algorithm is

designed to optimize the proposed problem with proved convergence. Extensive

experiments on several datasets validates the superior performance of APMF.
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